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THE PROBLEM OF FUGITIVE INTERCEPTION ON A PLANE 
IN THE ONE-DIMENSIONAL VECTOR FIELD OF A MOVING FLUID 

The process of pursuit on the horizontal plane of a fugitive boat V by a pursuing boat U  in a one-dimensional 
field of moving fluid is considered. The subject of the research is a mathematical model and paradoxical 
characteristics and properties of the persecution process. The main goal of the study was to establish the 
trajectory of the interception of the fleeing boat by the pursuit boat in the moving fluid flow.

In the work, a mathematical model of the process of chasing a fugitive boat on a plane is built in the form 
of four normal differential equations of the first order. The model takes into account the speed of the river, 
which forms a one-dimensional field of moving fluid. It is assumed that the pursuer U at each moment of time 
tries to move along the instantaneous line that visually connects two current points (him and the fugitive) on 
the horizontal plane, that is, the pursuer “keeps the course on the fugitive” during the pursuit. At the same 
time, the fugitive V  tries to cross the river as quickly as possible, moving in the direction of the “life line”. 
The pursuer tries to catch up with the fleeing boat before it reaches a certain point, which is on the “lifeline”.

The method of numerical solution and research of the resulting system of differential equations was 
proposed and implemented in the MathCad package, and the equation of the pursuit curve was found using it. 
The main characteristics of the pursuit curve were established and analyzed, certain paradoxical phenomena 
were noted. Among the main characteristics of the pursuit process, the dependence between the amount of 
horizontal movement of the fugitive V towards the “lifeline” and the angular coefficient of his escape line in 
stagnant water was obtained. On the graph of this dependence, a well-defined local maximum is observed, 
which is reached at some non-zero value of the angular coefficient k . Numerical analysis also showed that 
there is some minimum limit of the ratio α

MIN
 of the speed modules of the pursuer U and the fugitive V , for 

which the pursuer U will be able to detain the fugitive within the given lane x X� � �0,  before the fugitive 
crosses the “life line”. If the value α  is less than the specified value α

MIN
, then the fugitive V  will not be 

detained in this lane.
Key words: the pursuer, the fugitive, the process of pursuit, pursuit curve, “life line”, escape line, successful 

escape, the speed of the river.

Formulation of the problem. Pursuit problems 
have always been among those that have interested 
various researchers since ancient times [1–4]. With the 
development of technical means and with the growth 
of computing capabilities and capacities of modern 
computers, the pursuit tasks became more precise and 
complicated, especially in the military field of inter-
ception of combat targets [5–22]. At the same time, in 
the majority of formulations of such problems, the pro-
cess of pursuit was considered in stationary conditions 
of the external environment, that is, it did not depend 
on the change in the position in time of the points of 
space in which both the pursuer and the fugitive are 
instantly located. This work considers just such a case.

The object of the study is the process of chasing 
and intercepting a fugitive boat by a chasing boat on 
the horizontal surface of the river, taking into account 
the speed of its current.

The subject of the study was the mathematical 
model and paradoxical properties and characteristics 
of the specified persecution process.

The purpose of the research: to find 1) the tra-
jectory of the interception L  of the fugitive boat 
V  by the pursuit boat U  in moving water; 2) the point 
on the surface of the river in which the pursuer will 
catch up with the fugitive; 3) the angular coefficient 
k  of the escape line, which ensures the maximum 
movement x k( )  of the escapee along the horizontal 
axis perpendicular to the “life line”.

So, consider the starting position of two moving 
points, one of which is chasing the other (Fig. 1).

On one bank (indicated in Fig. 1 as the ordinate 
axis OY ) of a raging river, there are two boats at a 
distance y0  from each other – a coast guard boat U  
(hereinafter the pursuit boat) and a border violator boat 
V  (hereinafter the fugitive boat). The river separates  
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the two countries as a natural border between them. 
At the same time, the runaway boat tries to cross the 
river as quickly as possible, moving in the direction of 
the border AD  between the two countries. Let's call it 
“lifeline” in the future. We believe that the “lifeline” 
AD  for the escape boat is parallel to the initial shore-
line OY of the two boats. The chasing boat U  tries to 
catch up with the boat V  before it has time to reach 
a certain point, which is on the “lifeline”. Point C in 
Fig. 1 is the point of possible detention of the fugitive 
V  by the pursuer U .

So, at the initial time t = 0 , the runaway boat V  
(relative to the moving river) begins to move along 
a straight line y kx=  with an angular coefficient k  
(Fig. 1) and with a speed whose modulus is constant 
�V p q const� � �2 2 . Here, the values p  and q  are 
the horizontal and vertical projections of the speed 
of the boat V , respectively, which it can develop as 
much as possible in stagnant water. The pursuing 
boat U  starts at the same time as the fleeing boat V
and in the process of pursuit chooses the direction of 
movement to the current location of the boat V on the 
plane OXY . At the same time, the boat U  also has 
a constant speed module �U u v const� � �2 2 , which 
is α  times greater than the speed module of the boat 
V : � ��U V� . Here, the variables u  and v  are the 
horizontal and vertical projections of the speed γU  
of the boat U , respectively, which it can develop as 
much as possible in stagnant water. Constant values 
γU  and γV  in a certain way depend on the power of 
the engines of both boats.

As it was said above, the specified speed modules 
of both boats are set relative to the stationary surface 
of the water without taking into account the transfer-
able speed of the river current. But in this problem, 
the movement of boats is considered in moving water, 
and the module of the speed of the river current is 
given by the function f x( )  of the horizontal coor-
dinate x , and the velocity vector is directed in the 
opposite direction in relation to the positive direction 
of the ordinate axis OY.

Physically, the movement of both boats can be 
identified with the movement of material points in the 
horizontal vector field 



B  of velocities of a moving 
fluid. In this case, the components of the vector field 
of the moving fluid have the form: 



B f x� �( , ( ), )0 0 . 
Vertical kinematics of boat movement (that is, move-
ment in the direction of the applique axis) is not con-
sidered in this problem.

Analysis of recent research and publications. 
The pursuit curve is the line along which the pursuer 
moves while pursuing the fugitive. The problem of 
persecution probably dates back to the time of Leon-
ardo da Vinci. He was the first to investigate this prob-
lem when the fugitive moved in a horizontal straight 
line. The general case was studied by the French sci-
entist Pierre Bouguer in 1732 [1–4]. The task was to 
find the curve of pursuit of a merchant ship by a pirate 
ship. At the same time, it was assumed that the speeds 
of the two vessels are always in the same ratio.

In works [4–7], the well-known problem of “chas-
ing four mice” is considered. Suppose four mice are 
located in each of the four corners of a square table, 
and each mouse runs to the one to the right of it. We 
need to find parametric curves that describe the tra-
jectory of each mouse. The solutions of this problem 
will be spiral trajectories that coincide in the center 
of the table.

In [8], deterministic continuous pursuit is con-
sidered, in which n ants chase each other in a circle 
and have predetermined variable speeds. Two dis-
crete analogues are considered, in which a cricket 
or a frog is cyclically pursued with a constant and 
equal speed. The possible evolution of this motion as 
time approaches infinity is explored: collisions, limit 
points, equilibrium states, and periodic motion.

The paper [9] presents a simple mathematical 
model of the local interaction of a colony of ants or 
other natural or artificial creatures with a great “sense 
of global geometry” to find a direct path from the 
anthill to food. This task was also considered within 
the framework of the general task of chasing n ants.

The paper [10] investigates the movement of an 
arbitrary set of points (or beetles) on a plane chas-
ing each other in cyclic pursuit. It is shown that for 
regular centrally symmetric configurations, analytical 
solutions are easily obtained by switching to the cor-
responding rotating frame of reference. Several cases 
of asymmetric configurations are discussed. In par-
ticular, it is shown that for three beetles in a triangular 
configuration of a centrally rotating coordinate sys-
tem, relative to which the beetles have no tangential 
velocity, is the point of collapse and coincides with 
one of the two Brocard points in the triangle. For the 
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case where all beetles have the same speed, a theorem 
is proved that whenever premature (ie, non-reciprocal)  
capture occurs, the collision must be head-on. This 
theorem is then applied to the case of three- and 
four-beetle configurations to show that these sys-
tems collapse up to a point, i.e., the capture is mutual. 
Some aspects of these results are generalized to the 
case of systems with n beetles.

The paper [11] investigates the motion of an arbi-
trary set of points on a plane chasing each other, mov-
ing in a circle. A set of marked points 1, 2, 3,..., n with 
coordinates ( x y1 1, ), ( x y2 2, ),…, ( x yn n, ), is given, and 
the point ( x yi i, ) is considered to be the chaser point 
of the fugitive point ( x yi i+ +1 1, ) along the instantaneous 
line that connects. To close the loop, the point ( x yn n, )  
must follow the point ( x y1 1, ). All points move at the 
same speed. Motion described in this way is called 
motion in "direct time." If the sign of the time deriv-
ative operator is changed, causing the point ( x yi i, ) 
to move away from the point ( x yi i+ +1 1, ), the motion 
is called "reverse-time" motion. Motion in both for-
ward and reverse time is studied using a computer 
program. In real time, it is observed that eventually, 
in almost all tested cases, the points become collinear, 
with a large ratio of maximum to minimum distance, 
regardless of the shape of the initial configuration. In 
reverse time, it is observed that the points eventually 
arrange themselves in a star pattern, with the angle of 
the star apex less than some number in the neighbor-
hood of ninety degrees. An analysis based on the sta-
bility of the equations of motion calculates the exact 
value of the maximum star angle as a function of the 
number of points.

The work [12] considers a well-known problem 
that continues to be analyzed today. Three (or more) 
beetles, which are initially located at the vertices of a 
regular polygon, begin to cyclically chase each other, 
moving together at the same speed. It is usually neces-
sary to know the distance traveled by each beetle before 
mutual capture. The case of four beetles is the simplest. 
Due to symmetry, the four beetles always remain on 
the four vertices of the square. Since the fleeing beetle 
B2 always moves at right angles to the pursuing bee-
tle B1, the capture speed of these two beetles depends 
only on the speed of the beetle B1. The case for n bee-
tles is only slightly more complicated. The problem is 
again symmetrical, since n beetles are always located 
in n vertices of a regular n-gon.

In the book [13], systematic methods of winning 
in differential pursuit and evasion games are pre-
sented, the scope and application of game procedures 
are investigated. Numerous examples are helpful and 
illustrate basic and advanced concepts, including cap-

ture, strategy selection, and algebraic theory. In addi-
tion, the book contains a review of both linear and 
non-linear games. Chapters in the book also include 
stroboscopic and isochronous target acquisition.

In [14], the formulation of the pursuit problem on 
the plane from the point of view of the multi-agent 
approach is proposed. Disagreements are shown that 
distinguish the proposed formulation of the problem 
from the formulation of such a problem from the point 
of view of the theory of differential games. A list of 
methods to be developed is given.

The article [15] considers differential pursuit 
games on the plane, in which a group of pursuers is 
created for each of the fugitives. Formulated tasks of 
optimization of pursuit groups. Numerical methods 
for solving such problems were constructed, numer-
ical experiments were conducted, and the effective-
ness of these methods was analyzed.

The article [16] considers the pursuit problem with 
simple movement for the case when the maximum 
speeds of the players are the same, and the fleeing 
person moves along a strictly convex smooth n-di-
mensional surface. It is proven that the end of pursuit 
is possible from any starting position. It is established 
that evasion is possible from some initial positions if 
the hypersurface contains a two-dimensional flat part.

In the book [17], problems from the classical the-
ory of optimal control are considered, in which opti-
mal control is determined, which optimizes a criterion 
subject to a dynamic constraint, which expresses the 
evolution of the system state under the influence of 
control variables. Different differential games are stud-
ied when extended to the case of multiple controllers 
(or players) with different and sometimes conflicting 
optimization criteria (gain function). The most devel-
oped part of differential games are zero-sum differen-
tial games (or differential pursuit games), which are 
extensively studied. The book develops a complete 
theory of differential pursuit games with full and par-
tial information. Numerous specific pursuit-evasion 
games (lifeline games, simple pursuit games, etc.) are 
solved, as well as new time-consistent optimality prin-
ciples in n-person differential game theory.

In the book [18], differential games are considered 
as conflict situations with an infinite set of alterna-
tives that can be described using differential equa-
tions. In the book, the main attention is paid to funda-
mental mathematical questions, the solution methods 
are illustrated by a large number of interesting exam-
ples, which are important in themselves. A number of 
unsolved problems for independent work are offered.

In the message [19], the persecution process was 
analyzed from a military point of view. As pursuers can 
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be considered: missiles, interceptor aircraft (or other air-
craft); intelligent search for a military target (for exam-
ple, ammunition depots, tanks, aircraft at airfields, etc.); 
a unit or individual soldier pursuing and approaching 
an enemy unit or individual soldier; ships approaching 
other ships, tracking torpedoes that explode when they 
hit enemy ships. In this paper, the pursuit process was 
considered under the following assumptions: the pur-
suer moves at a constant speed, the pursuit takes place 
in a given direction during a certain time interval, and 
the pursuer always sees the fugitive (target). The sim-
ulation of the pursuit process was first performed for 
the flat case, and later this model was generalized to the 
three-dimensional case. The purpose of the study was to 
determine the movement curve for the pursuer, provided 
the location of the target is known.

The technical report [20] provides a detailed 
description of the implementation of a clean pursuit 
curve tracking algorithm. Given the general success 
of the algorithm in recent years, it is likely that it will 
be used again in land navigation tasks. The report 
also includes a geometric version of the method and 
provides some information on the performance of the 
algorithm as a function of its parameters.

The article [21] describes a third-order chase, a 
game of evasion in which both players have the same 
speed and minimum turning radius. A idiosyncratic 
game is first resolved for a barrier or shell of states 
that can be captured. When capture is possible, the 
game at some level is decided for optimal control of 
the two players as a function of relative position. It 
is found that the solution of the problem includes a 
universal surface for the pursuer and an acceleration 
surface for the evaders.

The article [22] considers the coplanar problem 
of evading pursuit, in which two pursuers P1  and P2  
and one fugitive E participate. The fugitive E evades 
with a constant speed w > 1 greater than that of the 
pursuers, and must pass between the two pursuers P1  
and P2  with a single speed, the gain is the distance 
of closest approach to any of the pursuers. This is a 
typical two-player zero-sum game theory problem. 
Velocity directions P1 , P2  and E are chosen as con-
trolling variables. A closed-loop solution is obtained 
through elliptic functions of the first and second kind. 
The closed-loop solution is shown graphically in sev-
eral diagrams for different values of w.

 The considered problem is a continuation of pre-
vious studies [23–25], which considered the problem 
of the fastest movement of a boat in moving water in 
a variation setting. 

Construction of the differential equation of the 
trajectory of the pursuit boat.

Let us identify the location of the boats on the 
plane OXY  with the points U  and V . We denote by 
( , )x y  the coordinates of a point U  in moving water 
and by ( , )� �  – the coordinates of a point V  in mov-
ing water at the current moment of time t . Let's build 
a system of differential equations to establish the pur-
suit curve taking into account the transferable speed 
of the river current: 

dx
dt

u

dy
dt

v f x
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dt
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dt

q f x
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Let's set the expression for the angular coefficient 
′y  of the tangent to the curve L  at the current point 
U x y( , ) :

� � �y v f x u( ( )) .                          (2)
Note that the pursuer at each moment of time tries 

to move along the instantaneous line that visually con-
nects the two current points U x y( , )  and V ( , )� �  on the 
plane OXY  (that is, the pursuer U x y( , )  "keeps track 
of the fugitive" V ( , )� � ). At the same time, this direc-
tion must coincide with the direction of the tangent ′y  
to the desired pursuit curve U x y( , ) . Let's describe it 
mathematically, taking into account (2). As a result, we 
will get the equality of two angular coefficients:

( ( )) ( ) ( )v f x u y x� � � �� � .             (3)
First, let's get rid of the variables u  and v  in sys-

tem (1) using equality (3) and the relation for γU . To 
do this, let's express the variable v  in terms of the 
remaining variables ( , , , )x y � �  from equation (3). 

v f x u x y� � �( ) ( , , , )� � � ,              (4)
where � � � � �( , , , ) ( ) ( )x y y x� � � . In further transfor-
mations, the arguments of the function � � � �� ( , , , )x y  
will be omitted. Now let's use relations �U u v� �2 2  
and expression (4) to get rid of the variable u . As a 
result, we get a quadratic equation

u f x u f x U
2 2 2 21 2 0� � � � � �( ) ( ) ( )� � � .       (5)

Solutions of equation (5) are a pair of relations:
u f x f xU1 2

2 2 2 21 1, ( ) ( ) ( ) ( )� � � � ��
�

�
� �� � � � .   (6)

The corresponding two solutions for v  have the 
form:

v uU1 2
2

1 2
2

, ,� � �� .                        (7)
Now, in system (1), let's get rid of the variables p  

and q  using the relations �V p q� �2 2  and q kp= . 
In this problem, these variables are constant and have 
the following form: 

p kV1 2
21, � � �� , q k kV1 2

21, � � �� .        (8)
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Substituting the obtained expressions (6) – (8) into 
system (1), we obtain a normal system of four nonlin-
ear differential equations that describes the process of 
chasing a fugitive in moving water:

dx
dt

u x y

dy
dt

v x y f x

d
dt

p

d
dt

q f x

�
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�
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               (9)

Numerical analysis of the process of pursuit of 
a fugitive in moving water. 

For the numerical integration of system (9), 
the following initial conditions are chosen: 
x y( ) ( ) ( ) ; ( )0 0 0 0 0 2� � � �� � . So, we have the follow-
ing starting points: for the pursuing boat it is point 
U ( , )0 2 , and for the runaway boat – V ( , )0 0  respec-
tively. The function , which sets the modulus of the 
river current, has the form:

f x A x H( ) sin� � �0 � .               (10)
We present a graph (Fig. 2) constructed for the 

case of the pursuit process, in which the following 
movement parameters are selected: k � �1 , A0 1= , 
H = 2  and � � �U V � � 2 . On the graph in Fig. 2, the 
dashed curve represents the trajectory of the runaway 
boat V , and the solid curve represents the trajectory 
of the pursuing boat U . Note that the dashed curve in 
moving water is not straight, but has a certain curva-
ture due to the transfer speed of the river current.

0 0.5 1
3−

2−

1−

0

1

2

y

η

x ξ, 
 

Fig. 2. Pursuit (solid curve) and escape  
(dashed curve) curves for the case: 

k=–1, A0=1, H=2, α=2, y0=1 

The point on the plane OXY  where the fugitive 
will be apprehended has coordinates: C( . , . )1 264 2 170− .  
The time T  that will be spent on the pursuit process 
in this case is equal to: T = 1 787.  (time units).

Now let's examine the behavior of the function 
x k( )  (this is the horizontal coordinate of the fugitive's 
arrest point) depending on the variable angular coef-
ficient k  of the straight line along which the fugitive 
would move in stagnant water. For this, the following 

fixed parameters were chosen: A0 1= , H = 1 , y0 1=  
and � � 2 . The following initial conditions are chosen 
for integration: x y( ) ( ) ( ) ; ( )0 0 0 0 0 1� � � �� � . Thus, 
U ( , )0 1 − the starting point of the pursuit boat; V ( , )0 0 −
the starting point of the runaway boat's movement. 
Fig. 3 shows the indicated graph, on which a clearly 
expressed local maximum is observed, which is 
reached at a certain value of the angular coefficient k .  
In our case, it is approximately equal to k � �0 450, .
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0.62
0.64
0.66
0.68
0.7

0.72

x

k
 

Fig. 3. Graph of dependence of the maximum 
horizontal movement of the fugitive towards 

the “life line”

The local maximum of the curve indicates that 
there is a certain non-zero angle of inclination of the 
escape boat's direct motion (in stagnant water), which 
gives it the opportunity to achieve the maximum 
movement towards the “lifeline” AD . So, we observe 
a certain paradox: the curve in Fig. 3 establishes that 
the strategy of choosing an angle of inclination equal 
to zero for direct escape in standing water (that is, 
movement along the shortest segment connecting two 
parallel lines OY  and AD  – which would be natural) 
is not correct for a successful escape. In this version 
of the calculation ( � � 2 , k � �0 450, ), this movement 
is as follows: x( , ) ,� �0 45 0 717  (distance units). For 
comparison, we note that if the “life line” AD  were, 
for example, at a distance of X = 0 700,  (units of dis-
tance) from the ordinate axis, then the escape of the 
boat V would be successful, unlike the case when a 
straight line with a zero angle coefficient was cho-
sen for escape (i.e. abscissa axis). In the latter case 
x X( ) .0 0 642� � , and the fugitive will definitely be 
detained.

Numerical analysis of the pursuit process also 
showed that there is a certain minimum limit of the 
ratio of speed modules � � �U V MIN

� , at which the pur-
suer U  will be able to detain the fugitive V  within 
the given lane 0 < <x X  before the fugitive crosses 
the “life line” AD . If the value α  is less than the 
specified value α

MIN
, then the fugitive V  will not 

be apprehended in this lane. Recall that the ratio α  
establishes a connection between the power of the 
motors of the two boats. Moreover, the value α

MIN
 is  
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significantly different from the similar value in the 
case when the speed of the river flow is not taken into 
account in the formulation of the problem.

To illustrate this interesting property, consider the 
process of chasing a fugitive in the case of k � �0 450, ,
A0 1= , H = 1 , y0 1= , X = 1 00, . First, we will find the 
minimum value α

MIN
 that will ensure the arrest of the 

fugitive within the given lane 0 1 00< <x , . A numeri-
cal experiment showed that it is equal to: �

MIN
� 1 69, .  

Fig. 4 shows the pursuit curve constructed for the 
considered case.

0 0.2 0.4 0.6 0.8
1−

0.5−

0

0.5

1

y

η

x ξ,  
 Fig. 4. The process of chasing and apprehending 

a fugitive in a given lane 0 1 00< <x ,  
at a speed ratio �

MIN
� 1 69,

The intersection of the two curves occurs at the 
point C( , ; , )0 997 1 001− , which indicates that the 
fugitive V  was apprehended within the given lane 
0 1 00< <x , .

Conclusions. The work solves the actual problem 
of creating a mathematical model of the process of 
chasing and apprehending a fugitive in a horizontal 

vector field of a moving fluid with certain restrictions 
on the movement of the fugitive.

The scientific novelty of the obtained results lies 
in the fact that for the first time a mathematical model 
of the process of chasing a fugitive was formulated 
and built, taking into account the transferable speed 
of the external environment.

The practical significance of the obtained results is 
that based on the developed mathematical model and its 
software implementation, a numerical analysis of the 
fugitive pursuit process was carried out and its impor-
tant characteristics and properties were established. One 
of them concerns the choice of the direction of escape 
and indicates that there is a certain non-zero angle of 
inclination of the rectilinear (in still water) movement of 
the fleeing boat, which, out of all other possible angles, 
makes it possible to achieve its maximum movement 
closest to the “lifeline”. Thus, this paradoxical property 
establishes that the choice of the angle of inclination of 
the escape line, which is equal to zero, is not optimal for 
a successful escape. The results of the numerical experi-
ment allow recommending the developed mathematical 
model and its software implementation for further prac-
tical use in the study of pursuit processes in horizontal 
vector fields of a moving fluid.

Prospects for further research will be related to 
the study of the features and properties of the pur-
suit process for the case when the fugitive chooses 
an algebraic curve of the second order (in a standing 
fluid) for escape, provided that the transfer velocity of 
the moving fluid is taken into account.
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Легеза В.П., Нещадим О.М. ЗАДАЧА ПЕРЕХОПЛЕННЯ ВТІКАЧА НА ПЛОЩИНІ 
В ОДНОВИМІРНОМУ ВЕКТОРНОМУ ПОЛІ РУХОМОЇ РІДИНИ

Розглядається процес переслідування на горизонтальній площині катера-втікача V  катером-пере-
слідувачем U  в одновимірному полі рухомої рідини. Предметом дослідження є математична модель 
та характеристики і властивості процесу переслідування. Основною метою дослідження було вста-
новлення траєкторії перехоплення катера-втікача V  катером переслідування U  у рухомому потоці 
рідини. Побудовано математичну модель процесу переслідування катера-втікача V  на площині у 
вигляді чотирьох нормальних диференціальних рівнянь першого порядку. Модель враховує швидкість 
течії річки, яка утворює одновимірне поле рухомої рідини. Припускалося, що переслідувач U  в кожен 
момент часу намагається рухатися по миттєвій лінії, яка візуально з'єднує дві поточні точки (його і 
втікача V ) на горизонтальній площині, тобто переслідувач U  «тримає курс на втікача» під час пере-
слідування. При цьому втікач V намагається якомога швидше перетнути річку, рухаючись у напрямку 
«лінії життя» AD . В свою чергу, переслідувач U намагається наздогнати катер-втікач V  до того, як 
той встигне досягти певної точки, яка знаходиться на «лінії життя» AD . Запропоновано і реалізо-
вано в пакеті MathCad метод числового розв’язання і дослідження отриманої системи диференціаль-
них рівнянь та з його використанням знайдено рівняння кривої переслідування. Встановлено і проана-
лізовано основні характеристики кривої переслідування, відмічені певні парадоксальні властивості. 
Серед основних характеристик процесу переслідування отримано залежність між величиною гори-
зонтального переміщення втікача V у бік «лінії життя» та кутовим коефіцієнтом k  його лінії втечі 
в стоячій воді. На графіку цієї залежності спостерігається чітко виражений локальний максимум, 
який досягається при деякому ненульовому значенні кутового коефіцієнта k . Числовий аналіз також 
показав, що існує деяка мінімальна межа α

MIN
 співвідношення модулів швидкостей переслідувача U  і 

втікача V , за якого переслідувач U зможе затримати втікача V  в межах заданої смуги x X� � �0,  до 
того, як втікач перетне «лінію життя». Якщо значення � ��

MIN
, то втікач V не буде затриманий на 

даній смузі.
Ключові слова: втікач, переслідувач, процес переслідування, крива переслідування, «лінія життя», 

лінія втечі, успішна втеча, швидкість течії річки.


