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THE PROBLEM OF FUGITIVE INTERCEPTION ON A PLANE
IN THE ONE-DIMENSIONAL VECTOR FIELD OF A MOVING FLUID

The process of pursuit on the horizontal plane of a fugitive boat V by a pursuing boat U in a one-dimensional
field of moving fluid is considered. The subject of the research is a mathematical model and paradoxical
characteristics and properties of the persecution process. The main goal of the study was to establish the
trajectory of the interception of the fleeing boat by the pursuit boat in the moving fluid flow.

In the work, a mathematical model of the process of chasing a fugitive boat on a plane is built in the form
of four normal differential equations of the first order. The model takes into account the speed of the river,
which forms a one-dimensional field of moving fluid. It is assumed that the pursuer U at each moment of time
tries to move along the instantaneous line that visually connects two current points (him and the fugitive) on
the horizontal plane, that is, the pursuer “keeps the course on the fugitive” during the pursuit. At the same
time, the fugitive V tries to cross the river as quickly as possible, moving in the direction of the “life line”.
The pursuer tries to catch up with the fleeing boat before it reaches a certain point, which is on the “lifeline”.

The method of numerical solution and research of the resulting system of differential equations was
proposed and implemented in the MathCad package, and the equation of the pursuit curve was found using it.
The main characteristics of the pursuit curve were established and analyzed, certain paradoxical phenomena
were noted. Among the main characteristics of the pursuit process, the dependence between the amount of
horizontal movement of the fugitive V towards the “lifeline” and the angular coefficient of his escape line in
stagnant water was obtained. On the graph of this dependence, a well-defined local maximum is observed,
which is reached at some non-zero value of the angular coefficient k. Numerical analysis also showed that
there is some minimum limit of the ratio o of the speed modules of the pursuer U and the fugitive V', for
which the pursuer U will be able to detain the fugitive within the given lane x [0,X]| before the fugitive
crosses the “life line”. If the value o. is less than the specified value o, then the fugitive V. will not be
detained in this lane.

Key words: the pursuer, the fugitive, the process of pursuit, pursuit curve, “life line”, escape line, successful
escape, the speed of the river.

The subject of the study was the mathematical
model and paradoxical properties and characteristics

Formulation of the problem. Pursuit problems
have always been among those that have interested

various researchers since ancient times [1—4]. With the
development of technical means and with the growth
of computing capabilities and capacities of modern
computers, the pursuit tasks became more precise and
complicated, especially in the military field of inter-
ception of combat targets [5—22]. At the same time, in
the majority of formulations of such problems, the pro-
cess of pursuit was considered in stationary conditions
of the external environment, that is, it did not depend
on the change in the position in time of the points of
space in which both the pursuer and the fugitive are
instantly located. This work considers just such a case.

The object of the study is the process of chasing
and intercepting a fugitive boat by a chasing boat on
the horizontal surface of the river, taking into account
the speed of its current.
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of the specified persecution process.

The purpose of the research: to find 1) the tra-
jectory of the interception L of the fugitive boat
V' by the pursuit boat U in moving water; 2) the point
on the surface of the river in which the pursuer will
catch up with the fugitive; 3) the angular coefficient
k of the escape line, which ensures the maximum
movement x(k) of the escapee along the horizontal
axis perpendicular to the “life line”.

So, consider the starting position of two moving
points, one of which is chasing the other (Fig. 1).

On one bank (indicated in Fig. 1 as the ordinate
axis OY ) of a raging river, there are two boats at a
distance y, from each other — a coast guard boat U
(hereinafter the pursuit boat) and a border violator boat
V' (hereinafter the fugitive boat). The river separates
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Fig. 1. Pursuit curve

the two countries as a natural border between them.
At the same time, the runaway boat tries to cross the
river as quickly as possible, moving in the direction of
the border AD between the two countries. Let's call it
“lifeline” in the future. We believe that the “lifeline”
AD for the escape boat is parallel to the initial shore-
line OY of the two boats. The chasing boat U tries to
catch up with the boat V' before it has time to reach
a certain point, which is on the “lifeline”. Point C in
Fig. 1 is the point of possible detention of the fugitive
V' by the pursuer U .

So, at the initial time 7 = 0, the runaway boat V'
(relative to the moving river) begins to move along
a straight line y = kx with an angular coefficient &
(Fig. 1) and with a speed whose modulus is constant
vy =+/p> + ¢ = const . Here, the values p and ¢ are
the horizontal and vertical projections of the speed
of the boat V', respectively, which it can develop as
much as possible in stagnant water. The pursuing
boat U starts at the same time as the fleeing boat V'
and in the process of pursuit chooses the direction of
movement to the current location of the boat ¥ on the
plane OXY . At the same time, the boat U also has
a constant speed module vy, =vu® + v* = const , which
is o times greater than the speed module of the boat
V: y, =ay,. Here, the variables u and v are the
horizontal and vertical projections of the speed vy,
of the boat U, respectively, which it can develop as
much as possible in stagnant water. Constant values
v, and v, in a certain way depend on the power of
the engines of both boats.

As it was said above, the specified speed modules
of both boats are set relative to the stationary surface
of the water without taking into account the transfer-
able speed of the river current. But in this problem,
the movement of boats is considered in moving water,
and the module of the speed of the river current is
given by the function f(x) of the horizontal coor-
dinate x, and the velocity vector is directed in the
opposite direction in relation to the positive direction
of the ordinate axis OY.

Physically, the movement of both boats can be
identified with the movement of material points in the
horizontal vector field B of velocities of a moving
fluid. In this case, the components of the vector field
of the moving fluid have the form: B =(0,-f(x),0).
Vertical kinematics of boat movement (that is, move-
ment in the direction of the applique axis) is not con-
sidered in this problem.

Analysis of recent research and publications.
The pursuit curve is the line along which the pursuer
moves while pursuing the fugitive. The problem of
persecution probably dates back to the time of Leon-
ardo da Vinci. He was the first to investigate this prob-
lem when the fugitive moved in a horizontal straight
line. The general case was studied by the French sci-
entist Pierre Bouguer in 1732 [1-4]. The task was to
find the curve of pursuit of a merchant ship by a pirate
ship. At the same time, it was assumed that the speeds
of the two vessels are always in the same ratio.

In works [4—7], the well-known problem of “chas-
ing four mice” is considered. Suppose four mice are
located in each of the four corners of a square table,
and each mouse runs to the one to the right of it. We
need to find parametric curves that describe the tra-
jectory of each mouse. The solutions of this problem
will be spiral trajectories that coincide in the center
of the table.

In [8], deterministic continuous pursuit is con-
sidered, in which n ants chase each other in a circle
and have predetermined variable speeds. Two dis-
crete analogues are considered, in which a cricket
or a frog is cyclically pursued with a constant and
equal speed. The possible evolution of this motion as
time approaches infinity is explored: collisions, limit
points, equilibrium states, and periodic motion.

The paper [9] presents a simple mathematical
model of the local interaction of a colony of ants or
other natural or artificial creatures with a great “sense
of global geometry” to find a direct path from the
anthill to food. This task was also considered within
the framework of the general task of chasing n ants.

The paper [10] investigates the movement of an
arbitrary set of points (or beetles) on a plane chas-
ing each other in cyclic pursuit. It is shown that for
regular centrally symmetric configurations, analytical
solutions are easily obtained by switching to the cor-
responding rotating frame of reference. Several cases
of asymmetric configurations are discussed. In par-
ticular, it is shown that for three beetles in a triangular
configuration of a centrally rotating coordinate sys-
tem, relative to which the beetles have no tangential
velocity, is the point of collapse and coincides with
one of the two Brocard points in the triangle. For the
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case where all beetles have the same speed, a theorem
is proved that whenever premature (ie, non-reciprocal)
capture occurs, the collision must be head-on. This
theorem is then applied to the case of three- and
four-beetle configurations to show that these sys-
tems collapse up to a point, i.e., the capture is mutual.
Some aspects of these results are generalized to the
case of systems with n beetles.

The paper [11] investigates the motion of an arbi-
trary set of points on a plane chasing each other, mov-
ing in a circle. A set of marked points 1, 2, 3...., n with
coordinates ( x,,¥, ), (x5, %, ),-.-, (x,,¥, ), is given, and
the point ( x;,y,) is considered to be the chaser point
of the fugitive point ( x;,,, y,,, ) along the instantaneous
line that connects. To close the loop, the point ( x,, y, )
must follow the point ( x,,y, ). All points move at the
same speed. Motion described in this way is called
motion in "direct time." If the sign of the time deriv-
ative operator is changed, causing the point (x;, ;)
to move away from the point (x,,,,»;,, ), the motion
is called "reverse-time" motion. Motion in both for-
ward and reverse time is studied using a computer
program. In real time, it is observed that eventually,
in almost all tested cases, the points become collinear,
with a large ratio of maximum to minimum distance,
regardless of the shape of the initial configuration. In
reverse time, it is observed that the points eventually
arrange themselves in a star pattern, with the angle of
the star apex less than some number in the neighbor-
hood of ninety degrees. An analysis based on the sta-
bility of the equations of motion calculates the exact
value of the maximum star angle as a function of the
number of points.

The work [12] considers a well-known problem
that continues to be analyzed today. Three (or more)
beetles, which are initially located at the vertices of a
regular polygon, begin to cyclically chase each other,
moving together at the same speed. It is usually neces-
sary to know the distance traveled by each beetle before
mutual capture. The case of four beetles is the simplest.
Due to symmetry, the four beetles always remain on
the four vertices of the square. Since the fleeing beetle
B2 always moves at right angles to the pursuing bee-
tle B1, the capture speed of these two beetles depends
only on the speed of the beetle B1. The case for n bee-
tles is only slightly more complicated. The problem is
again symmetrical, since n beetles are always located
in n vertices of a regular n-gon.

In the book [13], systematic methods of winning
in differential pursuit and evasion games are pre-
sented, the scope and application of game procedures
are investigated. Numerous examples are helpful and
illustrate basic and advanced concepts, including cap-
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ture, strategy selection, and algebraic theory. In addi-
tion, the book contains a review of both linear and
non-linear games. Chapters in the book also include
stroboscopic and isochronous target acquisition.

In [14], the formulation of the pursuit problem on
the plane from the point of view of the multi-agent
approach is proposed. Disagreements are shown that
distinguish the proposed formulation of the problem
from the formulation of such a problem from the point
of view of the theory of differential games. A list of
methods to be developed is given.

The article [15] considers differential pursuit
games on the plane, in which a group of pursuers is
created for each of the fugitives. Formulated tasks of
optimization of pursuit groups. Numerical methods
for solving such problems were constructed, numer-
ical experiments were conducted, and the effective-
ness of these methods was analyzed.

The article [16] considers the pursuit problem with
simple movement for the case when the maximum
speeds of the players are the same, and the fleeing
person moves along a strictly convex smooth n-di-
mensional surface. It is proven that the end of pursuit
is possible from any starting position. It is established
that evasion is possible from some initial positions if
the hypersurface contains a two-dimensional flat part.

In the book [17], problems from the classical the-
ory of optimal control are considered, in which opti-
mal control is determined, which optimizes a criterion
subject to a dynamic constraint, which expresses the
evolution of the system state under the influence of
control variables. Different differential games are stud-
ied when extended to the case of multiple controllers
(or players) with different and sometimes conflicting
optimization criteria (gain function). The most devel-
oped part of differential games are zero-sum differen-
tial games (or differential pursuit games), which are
extensively studied. The book develops a complete
theory of differential pursuit games with full and par-
tial information. Numerous specific pursuit-evasion
games (lifeline games, simple pursuit games, etc.) are
solved, as well as new time-consistent optimality prin-
ciples in n-person differential game theory.

In the book [18], differential games are considered
as conflict situations with an infinite set of alterna-
tives that can be described using differential equa-
tions. In the book, the main attention is paid to funda-
mental mathematical questions, the solution methods
are illustrated by a large number of interesting exam-
ples, which are important in themselves. A number of
unsolved problems for independent work are offered.

In the message [19], the persecution process was
analyzed from a military point of view. As pursuers can
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be considered: missiles, interceptor aircraft (or other air-
craft); intelligent search for a military target (for exam-
ple, ammunition depots, tanks, aircraft at airfields, etc.);
a unit or individual soldier pursuing and approaching
an enemy unit or individual soldier; ships approaching
other ships, tracking torpedoes that explode when they
hit enemy ships. In this paper, the pursuit process was
considered under the following assumptions: the pur-
suer moves at a constant speed, the pursuit takes place
in a given direction during a certain time interval, and
the pursuer always sees the fugitive (target). The sim-
ulation of the pursuit process was first performed for
the flat case, and later this model was generalized to the
three-dimensional case. The purpose of the study was to
determine the movement curve for the pursuer, provided
the location of the target is known.

The technical report [20] provides a detailed
description of the implementation of a clean pursuit
curve tracking algorithm. Given the general success
of the algorithm in recent years, it is likely that it will
be used again in land navigation tasks. The report
also includes a geometric version of the method and
provides some information on the performance of the
algorithm as a function of its parameters.

The article [21] describes a third-order chase, a
game of evasion in which both players have the same
speed and minimum turning radius. A idiosyncratic
game is first resolved for a barrier or shell of states
that can be captured. When capture is possible, the
game at some level is decided for optimal control of
the two players as a function of relative position. It
is found that the solution of the problem includes a
universal surface for the pursuer and an acceleration
surface for the evaders.

The article [22] considers the coplanar problem
of evading pursuit, in which two pursuers A, and P,
and one fugitive E participate. The fugitive E evades
with a constant speed w > 1 greater than that of the
pursuers, and must pass between the two pursuers P,
and P, with a single speed, the gain is the distance
of closest approach to any of the pursuers. This is a
typical two-player zero-sum game theory problem.
Velocity directions A, P, and E are chosen as con-
trolling variables. A closed-loop solution is obtained
through elliptic functions of the first and second kind.
The closed-loop solution is shown graphically in sev-
eral diagrams for different values of w.

The considered problem is a continuation of pre-
vious studies [23-25], which considered the problem
of the fastest movement of a boat in moving water in
a variation setting.

Construction of the differential equation of the
trajectory of the pursuit boat.

Let us identify the location of the boats on the
plane OXY with the points U and V . We denote by
(x,y) the coordinates of a point U in moving water
and by (¢,m) — the coordinates of a point V' in mov-
ing water at the current moment of time 7. Let's build
a system of differential equations to establish the pur-
suit curve taking into account the transferable speed
of the river current:

dx

7:u;

dt

By r
dg
dt_pa
dn_ oo
7 JS(x);

Let's set the expression for the angular coefficient
y' of the tangent to the curve L at the current point
Ux,y):
V=0-f(x)/u. ()
Note that the pursuer at each moment of time tries
to move along the instantaneous line that visually con-
nects the two current points U(x, y) and V(& n) on the
plane OXY (that is, the pursuer U(x,y) "keeps track
of the fugitive" V(¢,n) ). At the same time, this direc-
tion must coincide with the direction of the tangent )’
to the desired pursuit curve U(x,y). Let's describe it
mathematically, taking into account (2). As a result, we
will get the equality of two angular coefficients:

v - fN/u=m-p/E-x). 3)
First, let's get rid of the variables u and v in sys-
tem (1) using equality (3) and the relation for y, . To
do this, let's express the variable v in terms of the
remaining variables (x,y,& ) from equation (3).
V:f(x)+u'm(xrysésn)5 (4)
where o(x, y,&,m) = (m - »)/(§ — x) . In further transfor-
mations, the arguments of the function o = o(x, y,&,m)
will be omitted. Now let's use relations y, = vu® +*
and expression (4) to get rid of the variable u . As a
result, we get a quadratic equation
- (1+0®) +2f(x)ou+ f1(x)—y; =0. %)
Solutions of equation (5) are a pair of relations:
i, 4~/ ot 11+ ) - 1) | [a+e). (6)

The corresponding two solutions for v have the

form:
‘71,2 = i\/Y?f - ”1%2 . (7)
Now, in system (1), let's get rid of the variables p
and ¢ using the relations y, =+/p’ +¢*> and ¢=kp.
In this problem, these variables are constant and have
the following form:

ﬁl,Z :i‘YV/Vl-Fk2 s 51,2 :i'YVk/\/1+k2 .

®)
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Substituting the obtained expressions (6) — (8) into
system (1), we obtain a normal system of four nonlin-
ear differential equations that describes the process of
chasing a fugitive in moving water:

% =i(x,y,&,m);

B e, ,Em) - £

dt ©)
de

dt - p9

dn _ . .

ik S();

Numerical analysis of the process of pursuit of
a fugitive in moving water.

For the numerical integration of system (9),
the following initial conditions are chosen:
x(0) = £(0) = n(0) = 0; y(0) = 2. So, we have the follow-
ing starting points: for the pursuing boat it is point
U(0,2), and for the runaway boat — ¥(0,0) respec-
tively. The function , which sets the modulus of the
river current, has the form:

f(x) = Aysin(nx/H). (10)

We present a graph (Fig. 2) constructed for the
case of the pursuit process, in which the following
movement parameters are selected: k=-1, 4, =1,
H =2 and y,/y, =a =2. On the graph in Fig. 2, the
dashed curve represents the trajectory of the runaway
boat V', and the solid curve represents the trajectory
of the pursuing boat U . Note that the dashed curve in
moving water is not straight, but has a certain curva-
ture due to the transfer speed of the river current.

2
I

No-1 = S

) 0.5 1

X, &

Fig. 2. Pursuit (solid curve) and escape
(dashed curve) curves for the case:
k=-1, A)=1, H=2, a=2, y,=1

The point on the plane OXY where the fugitive
will be apprehended has coordinates: C(1.264,-2.170) .
The time 7 that will be spent on the pursuit process
in this case is equal to: 7 =1.787 (time units).

Now let's examine the behavior of the function
x(k) (this is the horizontal coordinate of the fugitive's
arrest point) depending on the variable angular coef-
ficient k£ of the straight line along which the fugitive
would move in stagnant water. For this, the following

172 Tom 34 (73) N2 3 2023

fixed parameters were chosen: 4, =1, H=1, y,=1
and o = 2. The following initial conditions are chosen
for integration: x(0) = £(0) =n(0) =0;y(0) =1. Thus,
U(0,1) - the starting point of the pursuit boat; (0, 0) —
the starting point of the runaway boat's movement.
Fig. 3 shows the indicated graph, on which a clearly
expressed local maximum is observed, which is
reached at a certain value of the angular coefficient & .
In our case, it is approximately equal to & = -0,450 .

0.72
0.7

0.68
X—O.66 / \

0.64

0.62
-1-08-06-04-02 O

k

/—

Fig. 3. Graph of dependence of the maximum
horizontal movement of the fugitive towards
the “life line”

The local maximum of the curve indicates that
there is a certain non-zero angle of inclination of the
escape boat's direct motion (in stagnant water), which
gives it the opportunity to achieve the maximum
movement towards the “lifeline” AD . So, we observe
a certain paradox: the curve in Fig. 3 establishes that
the strategy of choosing an angle of inclination equal
to zero for direct escape in standing water (that is,
movement along the shortest segment connecting two
parallel lines OY and AD — which would be natural)
is not correct for a successful escape. In this version
of the calculation (a =2,k = -0,450), this movement
is as follows: x(-0,45)=0,717 (distance units). For
comparison, we note that if the “life line” AD were,
for example, at a distance of X = 0,700 (units of dis-
tance) from the ordinate axis, then the escape of the
boat ¥V would be successful, unlike the case when a
straight line with a zero angle coefficient was cho-
sen for escape (i.e. abscissa axis). In the latter case
x(0) =0.642 < X, and the fugitive will definitely be
detained.

Numerical analysis of the pursuit process also
showed that there is a certain minimum limit of the
ratio of speed modules vy, /v, =, ,at which the pur-
suer U will be able to detain the fugitive ¥ within
the given lane 0 < x < X before the fugitive crosses
the “life line” AD . If the value o is less than the
specified value o, , then the fugitive ¥ will not
be apprehended in this lane. Recall that the ratio o
establishes a connection between the power of the
motors of the two boats. Moreover, the value o is
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significantly different from the similar value in the
case when the speed of the river flow is not taken into
account in the formulation of the problem.

To illustrate this interesting property, consider the
process of chasing a fugitive in the case of k = -0,450,
Ay =1, H=1, y,=1, X =1,00. First, we will find the
minimum value o that will ensure the arrest of the
fugitive within the given lane 0 < x <1,00 . A numeri-
cal experiment showed that it is equal to: o, =1,69.
Fig. 4 shows the pursuit curve constructed for the
considered case.

\\_

0 0.2 0.4 0.6 0.8
X, &

Fig. 4. The process of chasing and apprehending
a fugitive in a given lane 0<x <1,00
at a speed ratio , _1¢9

The intersection of the two curves occurs at the
point C(0,997;-1,001), which indicates that the
fugitive ¥ was apprehended within the given lane
0<x<1,00.

Conclusions. The work solves the actual problem
of creating a mathematical model of the process of
chasing and apprehending a fugitive in a horizontal

vector field of a moving fluid with certain restrictions
on the movement of the fugitive.

The scientific novelty of the obtained results lies
in the fact that for the first time a mathematical model
of the process of chasing a fugitive was formulated
and built, taking into account the transferable speed
of the external environment.

The practical significance of the obtained results is
that based on the developed mathematical model and its
software implementation, a numerical analysis of the
fugitive pursuit process was carried out and its impor-
tant characteristics and properties were established. One
of them concerns the choice of the direction of escape
and indicates that there is a certain non-zero angle of
inclination of the rectilinear (in still water) movement of
the fleeing boat, which, out of all other possible angles,
makes it possible to achieve its maximum movement
closest to the “lifeline”. Thus, this paradoxical property
establishes that the choice of the angle of inclination of
the escape line, which is equal to zero, is not optimal for
a successful escape. The results of the numerical experi-
ment allow recommending the developed mathematical
model and its software implementation for further prac-
tical use in the study of pursuit processes in horizontal
vector fields of a moving fluid.

Prospects for further research will be related to
the study of the features and properties of the pur-
suit process for the case when the fugitive chooses
an algebraic curve of the second order (in a standing
fluid) for escape, provided that the transfer velocity of
the moving fluid is taken into account.
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Jlere3za B.I1., Hemaaum O.M. 3AJTAYA INEPEXOIIJIEHHS BTIKAYA HA IIJIOLIWHI
B OJJTHOBUMIPHOMY BEKTOPHOMY ITOJII PYXOMOI PIJIUHU

Pozensoaemuvca npoyec nepecnioysantsa Ha 20pu30HMAbHIL RIOWUHI Kamepa-emikaya V xkamepom-nepe-
crioysauem U 6 oOHosuMipHOMY noii pyxomoi piounu. I[lpedmemom 0ocaiodcents € mamemamuyna mooeis
ma xapaxkmepucmuku i enacmusocmi npoyecy nepeciioyséants. OCHOBHOW0 Memot 00CiONHceHHs OVIo 6cma-
HOBJIeHHSI MPAEKMOPIi nepexonieHHs kamepa-emikaua V kamepom nepecnioysanua U y pyxomomy nomoyi
piounu. Ilobyoosano mamemamuuny mooeib npoyecy nepeciioy8aHus Kamepa-emixkaua V HaA NiOWuHi y
BUSTIA0T YOMUPLOX HOPMATbHUX OUGhepeHyianbHuX PieHAHbL nepuio2o nopsaoky. Mooens 8paxosye weuoKicms
meuii piuKu, sKa ymeopioe 00HO8UMIpHe noie pyxomoi piounu. Ilpunyckanocs, wo nepecnioysau U 6 kodcen
MOMEHM 4acy HaMAa2acmvbCs pyxamucs no Mummesii 1iHii, AKa 8i3yanbHo 3'e0nye 081 nomouni mouku (1o2o i
emixaya V ) na eopuzonmanvhii niowuni, moomo nepeciioysau U «mpumae Kypc Ha emikauay nio yac nepe-
cnioysanma. Ilpu yvomy emixkay V Hamazacmscs akomoza weuouie nepemHymu piuky, pyxaouucs y HanpsamKy
«ninii seummay AD . B ceoro uepey, nepecnioysau U namazaemuvca Haz0oeHamu kamep-emikad V. 00 moeo, K
Mol 6cmueHe 00CA2MY Ne8HOI MOUKU, AKA 3HAXOOUMbCA Ha «uiHil ocummsay AD . 3anpononosano i peanizo-
sano 6 naxemi MathCad memoo uucio6o2o po3e si3anHs i 00CAIONCEHH OMPUMAHOL cucmemu OupepeHyiaib-
HUX DIBHAHb MA 3 U020 UKOPUCTAHHAM 3HAUOEHO PIBHAHHA KPUsoi nepecnioysanus. Bcmanoeneno i npoana-
JII308AHO OCHOBHI XAPAKMEPUCTUKY KPUBOI nepecnioy8ants, GIOMIYeHi ne6Hi NapadoKCaibHi 61ACmMu8oCii.
Ceped 0CHOBHUX XapaKmepucmux npoyecy nepeciioy8aHHs OMPUMAHO 3ANEHCHICTNb MIdC 8eIUUUHOI0 20PU-
30HMANBLHO20 nepemiujerns emikaua V' y Oik «inil scummsy ma Kymosum Koegpiyicumom k tioeo ninii emeui
6 cmosuit 600i. Ha epaghixy yiei 3anesxcnocmi cnocmepieaemvcsi HimKko UPANCEHUL TOKATbHUL MAKCUMYM,
KU O0CA2AEMBCSL NPU OESAKOMY HEHYTbOBOMY 3HAUEHHI Kymogozo Koeiyicuma k. Yucnosuil ananiz maxoaic
NOKa3as, Wo iCHye 0esKa MIHIMANbHA Medxca o~ CNiBIOHOueHH MOOYL6 weuokocmeu nepecioyeaua U i
emikaua V , 3a akozo nepecnioysay U smoodice sampumamu emikaua V- 6 mevscax 3adanoi cmyeu x € [0,X] oo
mozo, AK 6MiKay nepemue «inio scummsy. Axwo snavenna o <o, mo emikay V ne 6yoe sampumanuii na
Oaniti cmysi.

Kniouogi cnosa: emixau, nepeciioysau, npoyec nepeciioysants, Kpusa nepeciioy8anHsl, «iiHisi HCummsy,
JIHISL 6meyi, ycniuna emeyd, WeuoKicmos meyii piuxu.
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